EFFECT OF CRITICAL SHEAR STRESSES BEHIND
THE FRONT OF A SHOCK WAVE ON THE FORMATION
OF FRAGMENTS

S. A. Novikov and A. V. Chernov UDC 539.58

In calculations of the interaction between rarefaction waves leading to breakdown of the material (frag-
mentation) a hydrodynamic equation of state is generally used. Such calculations are required, for example,
with determination of the value of the fragmentation stresses by a calculational —experimental method over the
thickness of the forming rear fragment in the sample. At the same time, from experimental work [1-3] it fol-
lows that, the region of pressures up to ~1 Mbar, the behavior of many metals differs considerably from hydro-
dynamic: The critical shear stresses behind the front of a compression shock wave, determining the amplitude
of the elastic unloading wave, can have an appreciable effect on the character of the flow forming (for example,
the so-called ™onhydrodynamic" attenuation of shock waves). The value of the critical shear stress o for
metals depends on the pressure in the shock wave and reaches a value of ~100 kbar. Therefore, it is of in-
terest to consider the formation of fragments taking account of the effect of shear stresses behind the front of
the shock wave.

Let us consider the simplest-case of the formation of a fragment with the impact of a plate-striker on a
sample (the striker and the sample are made of the same material). The scheme of the interaction between
unloading waves is shown in Fig. 1 in the coordinates x~t (path—time) and in Fig. 2 in the coordinates p—u
(pressure—mass velocity). The points designated by numbers in Fig. 2 (in p—u coordinates) determine the
state of the substance in regions of the flow in the plane x—t (Fig. 1) having the same numerical designation.

With the reflection of compression shock waves from the free surfaces of the striker and the sample,
unloading of the substance from the state 1 takes place first in elastic 1-2 and 1—4, andthen in plastic 2—3
and 4—5, rarefaction waves [the designation 1-2 corresponds to a wave converting the material from state 1 to
state 2 (see Fig. 2), corresponding to regions 1 and 2 (see Fig. 1), etc.].

In the case where the unloading shock wave 1~-2 from the side of the striker does not overtake the com-
pression wave in the sample, with intersection of the shock waves 1—2 and 1—4, the material is unloaded in the
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TABLE 1

h t x t x t x td x4 {

[3 a b b c c 1 AL At;

p=100 Ap=—157 p, =456 p,. = —66,7

2 10,452 11,450 0,528 10,623 | 0,484 | 1,032 0,544 | 1,479 | 0,549 | 0,715 | 0,424 | 0,042
4 10,702 | 3,798 | 0,931 | 2,421 | 0,807 | 3,096 | 0,834 { 3,227 | 0,939 | 2,455 | 0,264 | 0,014

p =200 Ap = —21.3 p, = 112 p_, == —113,5

0,405 1,509 | 0,491 0,532 | 0,414 {1,090 | 0,453 } 1,304 | 0,506 | 0,598 | 0,096 | 0,030
0,612 2,692 1 0,683 | 1,390 | 0,552 | 2,180 | 0,587 | 2,372 | 0,693 | 1,431 | 0,150 } 0,020
0,619 | 3,875 0,875 | 2,247 | 0,690 | 3,270 | 0,720 | 3,440 1 0,879 | 2,264 | 0,202 | 0,008

IS X

=300 Ap = —24 p, = 185 p,, = —149

2 10,37211,552 0,464 10,465 | 0,370 | 1,429 1 0,443 | 1,379 1 0,476 | 0,518 | 0,082 | 0,024
3 0,466 12,742 0,649 | 1,293 | 0,492 | 2,257 | 0,529 | 2,471 | 0,656 | 1,323 | 0,126 | 0,014

p =400 Ap == —26 p, = 262 p, = —178

2 |o,34411,596| 0,442 0,411} 0,338 | 1,157 ] 0,383 | 1,432 | 0,453 | 0,458 | 0,077 | 0,022
3 10,427 12797 | 0,622 | 1,218 | 0,451 | 2,314 | 0,487 | 2,540 | 0,627 | 1,241 | 0.120 | 0,010

TABLE 2

h Y “a % *p L *e Y *g Y ¥e | A Aty
p=100 Ap = —27 p, =22 p,...= —T4

2 0,664 1,316 | 0,736 | 0,708 1 0,743 | 0,986 | 0,738 | 1,074 | 0,766 | 0,805 | 0,148 | 0,060

4 1,088 3,541 11,275 2,528 1,188 2,957 | 4,211 | 3,037 { 1 295 2,594 0, 1306 0,040

6 [4,4525,768 | 1,813 | 4,347 | 1,664 | 4,929 | 4,685 | 5,002 | 1,824 | 4,382 0 466 | 0,022
p=200 Ap = —39 p, =70 pp.x= —132

2 10,610]1,386 (0,698 | 0,635 (0,634 | 1,029 | 0,674 | 1,476 | 0,722} 0,714 0,428 | 0,048

5 [1,43214,793 {1,483 13,200 |1,268 | 4,118 | 1,301 | 4,241 | 1,491 | 3,317 | 0,238 | 0, 018

p=300 Ap=—43 p, =138 p, .~ —200

a

2 {0,566 {1,449 | 0,666 | 0,573 | 0,576 | 1,065 | 0,626 | 1,255 | 0,687 | 0,642 | 0,120 | 0,042
4 |0,876|3,76211,478 {2,304} 0,961 | 3,495 1,001 | 3,355 | 1,187 | 2,333 | 0,250 | 0,018

plastic waves 2—6 and 4—6 to some pressure characterized by the point 6 (see Fig. 2). Then, with interaction
between the plastic waves 2-6, 2—-3 and 4—6, 4—5, there are two regions 7 and 8 with a negative pressure, de-
termined by the amplitude of the unloading shock wave, i.e., by the value of the critical shear stresses. After
this, with interaction of the waves 6 —7 and 68, there arises a region of maximal negative stresses, in which,
as is usually assumed, the breakdown of the material takes place.

Thus, up to the start of the action of the maximal elongational stresses, determined by the amplitude of
the compression shock waves, in two cross sections of the sample, elongational stresses act for a certain
period of time; the value of these stresses is determined by the value of the critical shear stresses with a
given pressure in the compression shock wave, i.e., it can be rather large. The characteristic time of the
action of the elongational stresses in regions 7 and 8 (see Fig. 1) can be evaluated from the distance from the
point @ up to the first characteristic curve, departing from the point d(at=2¢q—tz)).

Let us evaluate the parameters of an elongational pulse in these cross sections of the sample for copper
and aluminum, using known data on the equation of state of these metals [4] and the dependences of the critical
shear stresses on the pressure at the front of the shock wave [2].

We assume that at the shock adiabatic
Pn = p + (2/3)0,,

where py is the pressure of the shock compression, normal to the front of the shock wave; p is the hydrodynamlc
pressure. The critical shear stress is defined as equal to
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Oy = |pn - Prlv

where pr is the pressure parallel to the front of the shock wave. The value of o« is usually calculated under
the assumption of the constancy of the Poisson coefficient y. If it is postulated that the value of o4 with com-
pression is equal to gx with elongation, then, for the case of the propagation of a shock wave, we have

= (0.2 [(1—2v)/(1 — )],
where px is the amplitude of the unloading shock wave.

Figure 3 illustrates the arrangement of the shock adiabatic I, the curve of the hydrodyné.mic compression
I, and the curve of the plastic unloading III. The transition from stage 1 to state 2 takes place along the curve
of the elastic unloading.

At the curve of the plastic unloading, the following relationship is satisfied:
P = p — (2/3)0,.

Knowing the values of ox corresponding to the pressure of the shock compression py,, the curve of the plastic
unloading p_ can be constructed.

In the present work, the curve of p_, plotted from experimental data, was approximated in the region of
positive stresses by a function of the form p_= [Aj+A; (3 ~1)] (6 —1), and in the region of negative stresses by
a function of the form p_= Ao(‘s, ~1), where & =p /p, is the compression.

To solve the problem of the impact of a plate-striker on a sample, the method of characteristics is ap-
plied to the equations of motion of a continuous medium, written in Lagrangian coordinates.

The principal results of the calculations are given in Tables 1 and 2, where p is the pressure in the com-
pression shock wave; Ap is the pressure in regions 7 and 8 in Fig. 1; p, is the pressure in region 6
in Fig, 1; pmax is the maximal elongational stress (pressure everywhere in kilobars); h is the thick-
ness of the sample, referred to the thickness of the plate-striker; t, x are the coordintes of the points
denoted by letters in Fig. 1 (the letters with them correspond to the notation in Fig. 1; if the thick~
ness of the plate-striker is 1 mm, then x is measured in millimeters and , in microseconds; for
other thicknesses of the plate-striker, the spatial coordinate and the time vary proportionally); At, is the
characteristic time of the action of the elongational stresses in region 8 near the free surface of the sample;
At, is the characteristic time of the action of the elongational stresses in region 7.

Table 1 gives the results of calculations for aluminum, and Table 2 for copper; it can be seen that the
negative stresses in regions 7 and 8 before the action of the maximal elongational stresses are comparable to
the value of the splitting strength of the material [2].

One of the special characteristics of the flows under discussion is the fact that the characteristic time of
the action of the negative stresses in the region located inside the forming rear fragment is appreciably greater
than the time of the action, equal in value, of the elongational stress in the remaining part of the sample @mear
the impact surface). Since the value of these stresses is on the order of magnitude of the fragmentation strength
of the metal under these conditions, then, in accordance with existing concepts with respect to the dependence
of the breaking stresses on the time of their action, in both regions a certain pulverizing of the metal is to be
expected (the appearance of microcracks, not forming a failure surface). Here the degree of pulverizing (the
number of microcracks per unit of surface) in the splitting part of the sample should be greater than in the re-
maining part.

Experiments were made in which a copper sample with a diameter of 90 mm and a thickness of 10 mm
was loaded by the impact of a copper plate 2.5 mm thick, accelerated to a velocity of 500 m/sec. Under these
circumstances, the pressure at the front of the shock wave was 100 kbar. In the experiments, the rear fracture -
was recorded. On the microphotos of a section of the samples at some distance from the impact surface, i.e.
approximately in region 7 (see Fig. 1), there can be seen a series of individual microcracks, which can point to
the fact of the existence of short-term negative stresses in this section. The network of microcracks over the
thickness of the forming rear fragment is considerably denser, which is also in agreement with the results of
an analysis of the flows.
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STUDY OF MAXIMUM STRESS FIELD ALONGSIDE CRACKS
EMERGING FROM CONTOURS OF OPENINGS IN A PERFORATED
PLATE

V. M. Mirsalimov UDC 539.375

A considerable number of papers have appeared in recent years (see the reviews [1, 2]) in which the
stress state alongside cracks emerging from the contour of a single opening was investigated. The analogous
problem of the stretching of a plate with a single opening was the subject of [3].

§1. Let there be a doubly periodic array of circular openings having a radius A (A < 1) and centers at the
points

Pop = moy -+ noy (m, n==0, 1, +2,...), 0,=2, a, =2k, 1>0, Imo,>0.

Symmetric linear slits originate from the contours of the openings (Fig. 1), The contours of the circular open-
ings and the edges of the slits are free of loads. We consider the problem of the stretching of such a perforated -
plate by constant forces oy=0 in a direction perpendicular to the line of the slits. Because of the symmetry

of the boundary conditions and the geometry of the region D occupied by the plate material, the stresses are
doubly periodic functions with fundamental periods w; and w,.

To solve the problem in reasonable fashion, we combine the method developed for the solution of a doubly
periodic elastic problem [4] with the method for plotting {5, 6] in explicit form the Kolosov—~Muskhelishvili
potentials corresponding to unknown normal displacements along the slits.

Fig. 1
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